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Abstract
An inequality which sets an upper bound for characteristic functions (Fourier
transform of probabilities) of lattice distributions is established in terms of a
discrete version of the Fisher information. Its physical implications for the
survival probabilities and lifetime of quantum states are illustrated.

PACS numbers: 02.30.Nw, 02.50.Cw, 03.65.Ta

1. Introduction

Let F be any probability distribution function, that is, F : R → [0, 1] is non-decreasing, right
continuous, with limt→−∞ F(t) = 0, limt→∞ F(t) = 1. Let

φ(t) =
∫

R

eitx dF(x), t ∈ R

be its characteristic function [2, 6]. In the terminology of harmonic analysis, φ(−t) is precisely
the Fourier transform of the distribution F. In quantum mechanics, φ(−t) has the physical
interpretation as the survival amplitude (decay amplitude) of a quantum state [3].

The characteristic function φ(t) not only encodes all information about the probability
distribution F, but also synthesizes it in a most convenient way for many purposes such as
spectral analysis. The behaviours of φ(t) are the focus of many studies for both theoretical
and practical reasons. In particular, they are fundamental objects in probability theory [2, 6],
and when the characteristic functions are interpreted as the survival amplitudes of quantum
states they are relevant for quantifying time–energy uncertainty relations and decaying rate of
quantum states [3, 7–14].

According to Feller [2] (p 501, lemma 4), there exists only the following three possibilities
for φ(t):

(1) |φ(t)| = 1 for all t ∈ R.
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(2) |φ(t)| < 1 for all t ∈ R, t �= 0.
(3) |φ(T )| = 1 for a positive T and |φ(t)| < 1 for 0 < t < T .

Case (1) is trivial since in this case φ(t) = eiat for some a ∈ R and the distribution F is
concentrated at the point a. Case (2) arises often (but not necessarily) when F is absolutely
continuous and thus possesses a probability density. In case (3), φ(t) has period T and there
exists a real number b such that the probability distribution F is supported on the lattice
{b + kh : k ∈ Z} with h = 2π

T
and Z denoting the set of all integers.

In this paper, we are interested in seeking upper bounds for |φ(t)| in case (3), i.e., the
case when F is a lattice distribution. In this situation, F is specified by a probability vector
p = {pk, k ∈ Z}, which is a distribution supported on the lattice point {b + kh : k ∈ Z}. To
simplify matters without loss of generality, we may further assume b = 0, h = 1 (the general
cases can be easily transformed to this ‘standardized’ case). For later purpose, it is convenient
to introduce a random variable X taking values on the integer lattice Z such that the probability
that X equals k is pk , that is,

P(X = k) = pk, k ∈ Z.

The characteristic function of X or, equivalently, of p = {pk : k ∈ Z} is

φ(t) =
∑
k∈Z

eitkpk, t ∈ R.

In the study of local limit theorems of lattice distributions, it is required to estimate upper
bounds for |φ(t)|, and to estimate the integral [1, 4]∫

δ�|t |�π

|φ(t)|n dt, 0 < δ < π.

This is one motivation for our interest in pursing upper bounds for |φ(t)|. Another motivation
lies in the fact that in quantum mechanics upper bounds for |φ(t)| give useful information
about the dynamics of quantum states.

We will establish some new inequalities concerning φ(t) in terms of a discrete version of
the Fisher information of the corresponding probability distribution. In particular, we obtain
an upper bound for |φ(t)| when F is a lattice distribution. But first, to gain some intuition and
feeling about controlling φ(t), let us briefly review some lower and upper bound estimates for
characteristic functions which have interesting implications for quantum dynamics.

First, there are various lower bounds for |φ(t)| such as the celebrated Mandelstam–Tamm
inequality [13],

|φ(t)| � cos(tσ ), ∀ |t | � π

2σ
, (1)

and

|φ(t)| � 1 − 1
2σ 2|t |2, ∀ t ∈ R. (2)

Here, σ 2 is the variance of the probability distribution. If the variance is not necessarily finite,
the above two inequalities are not applicable, but we still have for any 0 � β � 2 [9],

|φ(t)| � 1 − cβMβ |t |β, ∀ t ∈ R.

Here, Mβ = ∫
R

|x|β dF(x) is the βth absolute moment of F and cβ is a positive constant (with
c2 = 1/2). Another similar bound is given in [11]. All the above inequalities have direct
consequences for quantifying the time–energy uncertainty relations from the evolution speed
perspective [8, 9, 13].
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Second, concerning upper bounds for |φ(t)|, a typical result is that if there exist constants
a and b such that |φ(t)| � a < 1 whenever |t | � b, then ([6], p 61)

|φ(t)| � 1 − 1 − a2

8b2
t2, ∀ |t | < b.

Clearly, this inequality is useless when F is a lattice distribution on the integer lattice, since
then the condition |φ(t)| < 1 cannot be satisfied for any a, in fact, φ(2kπ) = 1 for all k ∈ Z.

Some other upper bounds which have interesting implications for quantum dynamics
are [2]

|φ(t)|2 � 1
2 (1 + |φ(2t)|) (3)

and [12]

|φ(t)| � |φ(nt)|1

n
sin

( π

2n

)
+ cos

( π

2n

)
, n = 1, 2, . . . . (4)

Inequality (3) appeared in Feller [2], p 527. Inequality (4) can be derived readily from a
similar result in Luo and Zhang [12]. These inequalities are self-referencing in the sense that
they set an upper bound for |φ| at some point t in terms of the value of |φ| at some other point.

Our main result, which will be presented in section 2, is in some sense an inequality dual
to inequalities (1) and (2). It incorporates a key characteristic, namely, a discrete analogue of
the Fisher information as defined in [5], of the lattice probability distribution. In section 3, we
indicate some implications of our results in analysing lifetime of quantum harmonic oscillator
states.

2. An upper bound for characteristic functions

In order to establish an upper bound for |φ(t)|, we first prove a Cramér–Rao-type inequality
in matrix form when the underlying random variable is integer valued. It is essentially a
consequence of the Schwarz inequality, and may be of independent interest. In the following,
for two self-adjoint matrices A and B, the matrix inequality A � B means that A − B is
non-negative definite.

Lemma 1. Let X be a random variable taking values on the integer lattice Z such that
P(X = k) = pk > 0, k ∈ Z. Let g(x) = (g1(x), g2(x), . . . , gn(x)) : Z → Rn be a vector
function defined on Z such that the variance Var(gj (X)) < ∞, j = 1, 2, . . . , n. Then we have
the matrix inequality

Cov(g(X)) � 1

I (p)
(E(Dg(X))′E(Dg(X)).

Here, Cov(g(X)) is the covariance matrix of g(X) = (g1(X), g2(X), . . . , gn(X)), the symbol
E denotes expectation, Dg(x) = (Dg1(x),Dg2(x), . . . ,Dgn(x)) is a row vector with

Dgj(x) = gj (x + 1) − gj (x), x ∈ Z, j = 1, 2, . . . , n

and the prime′ denotes the transpose of a vector. I (p) is defined as

I (p) =
∑
k∈Z

(pk − pk−1)
2

pk

(5)

which is a discrete version of the Fisher information and is assumed to be finite.

Proof. We need to show that for any a = (a1, a2, . . . , an) ∈ Rn, it holds that

aCov(g(X))a′ � 1

I (p)
a(E(Dg(X))′E(Dg(X))a′. (6)
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Suppose that E(gj (X)) = µj , j = 1, 2, . . . , n, then simple manipulation shows that

∑
k∈Z

(pk − pk−1)


∑

j

aj (gj (k) − µj)


 =

∑
j

aj

(∑
k∈Z

(pk − pk−1)(gj (k) − µj)

)

= −
∑

j

aj E(Dgj (X)).

Accordingly, by the Schwarz inequality,∣∣∣∣∣∣
∑

j

aj E(Dgj (X))

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣
∑
k∈Z

pk − pk−1√
pk

· √
pk


∑

j

aj (gj (k) − µj)




∣∣∣∣∣∣
2

�
∑
k∈Z

(pk − pk−1)
2

pk

·
∑
k∈Z

pk


∑

j

aj (gj (k) − µj)




2

= I (p) · Var


∑

j

ajgj (X)


 .

Rewritten the above in matrix forms, we obtain inequality (6), which is the desired result. �

Theorem 1. Let p = {pk : k ∈ Z} be a lattice distribution supported on the whole integer
lattice Z (that is, pk > 0 for all k ∈ Z and

∑
k∈Z pk = 1) with characteristic function

φ(t) = ∑
k∈Z eitkpk, then

|φ(t)|2 � I (p)

I (p) + 4 sin2
(

t
2

) , ∀ t ∈ R. (7)

Here, I (p) is defined by equation (5).

Proof. We write the characteristic function φ(t) as the combination of its real part φ�(t) and
the imaginary part φ	(t) as

φ(t) = φ�(t) + iφ	(t).

For any fixed t ∈ R, let us take

g(x) = (cos(tx), sin(tx))

in the context of lemma 1, then the covariance matrix Cov(g(X)) = (cij )1�i,j�2 can be
straightforwardly evaluated as

c11 = E cos2(tX) − (E cos(tX))2

= 1
2 (1 + φ�(2t)) − φ2

�(t);
c12 = c21

= E(cos(tX) − E cos(tX))(sin(tX) − E sin(tX))

= 1
2φ	(2t) − φ�(t)φ	(t);

c22 = E sin2(tX) − (E sin(tX))2

= 1
2 (1 − φ�(2t)) − φ2

	(t).

If we put

A(t) = (eit − 1)φ(t) = A�(t) + iA	(t)
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where A�(t) and A	(t) are the real and imaginary parts of A(t), respectively, then from the
identity

cos(t (X + 1)) − cos(tX) = (cos(t) − 1) cos(tX) − sin(t) · sin(tX)

we have

E(cos(t (X + 1)) − cos(tX)) = (cos(t) − 1)φ�(t) − sin(t) · φ	(t) = A�(t).

Similarly, from

sin(t (X + 1)) − sin(tX) = (cos(t) − 1) sin(tX) + sin(t) · cos(tX)

we have

E(sin(t (X + 1)) − sin(tX)) = (cos(t) − 1)φ	(t) + sin(t) · φ�(t) = A	(t).

Consequently,

(E(Dg(X))′E(Dg(X)) =
(

A�(t)

A	(t)

)
(A�(t), A	(t)) =

(
A2

�(t) A�(t)A	(t)

A�(t)A	(t) A2
	(t)

)
.

Now applying lemma 1, we have(
1
2 (1 + φ�(2t)) − φ2

�(t) 1
2φ	(2t) − φ�(t)φ	(t)

1
2φ	(2t) − φ�(t)φ	(t) 1

2 (1 − φ�(2t)) − φ2
	(t)

)
� 1

I (p)

(
A2

�(t) A�(t)A	(t)

A�(t)A	(t) A2
	(t)

)
.

Taking the trace of the above inequality, we obtain

1 − |φ(t)|2 � 1

I (p)
|A(t)|2.

But from the definition of A(t), we know that

|A(t)|2 = 4 sin2

(
t

2

)
· |φ(t)|2.

The desired result follows. �

Corollary 1. For any 0 < δ < π , put

ω(δ) = sup
δ�|t |�π

|φ(t)|.

Then,

ω(δ) �
√

I (p)

I (p) + 4 sin2
(

δ
2

) .

Proof. This follows readily form theorem 1 by noting that sin2(t/2) is an even function and
is increasing on [0, π ]. �

Corollary 2. Let

τ =
∫ 2π

0
|φ(t)|2 dt

be the average of |φ(t)|2 in the period interval [0, 2π ]. Then,

τ � 2π

√
I (p)

I (p) + 4
. (8)
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Proof. Noting that

sin2

(
t

2

)
= 1 − cos(t)

2
,

we have
I (p)

I (p) + 4 sin2
(

t
2

) = I (p)

I (p) + 2
· 1

1 − 2
I (p)+2 cos(t)

.

Now inequality (8) follows from integrating inequality (7) in theorem 1 and making use of the
well-known integral∫ 2π

0

1

1 + a cos(t)
dt = 2π√

1 − |a|2
, |a| < 1.

�

Remark 1. If the probability distribution F is supported on a half of the integer lattice

Z
⋂

[s,∞) = {s, s + 1, s + 2, . . .}
where s is any integer which may be negative. Then with the convention ps−1 = 0 and by
modifying I (p),

I (p) =
∞∑

k=s

(pk − pk−1)
2

pk

.

All the above results still hold. This is relevant for our later applications when the energy
observable is the number operator.

3. Implications for quantum dynamics

Let us illustrate some interesting physical implications of our results. Following physicist’s
terminology and considering the evolution of an arbitrary initial quantum state |ψ〉 (represented
by a normalized wavefunction in L2(R)) driven by a time-independent energy observable H
(represented by a self-adjoint operator on L2(R)), the evolving state |ψt 〉 is determined by the
Schrödinger equation

ih̄
∂

∂t
|ψt 〉 = H |ψt 〉, |ψ0〉 = |ψ〉,

where h̄ is the Planck constant divided by 2π . Formally, the solution is given by
|ψt 〉 = e−itH/h̄|ψ〉, and the survival amplitude at time t is defined as

φ(t) = 〈ψ |ψt 〉 = 〈ψ | e−itH/h̄|ψ〉, t ∈ R.

Now assume that the energy spectrum of H is Z or rather {0, 1, 2, . . .} (which is the case when
H is the number operator of a harmonic oscillator). The complete set of energy eigenfunctions
{|k〉} of H has the properties that

H |k〉 = k|k〉, 〈k|k〉 = 1, 〈k|j 〉 = 0 for k �= j.

A quantum state |ψ〉 can be expanded in terms of the complete set {|k〉} as

|ψ〉 =
∑

k

ck|k〉

with ck = 〈k|ψ〉. Then by spectral analysis,

e−itH/h̄|ψ〉 =
∑

k

e−itk/h̄ck|k〉,
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and by the Parseval theorem,

φ(t) = 〈ψ | e−itH/h̄|ψ〉 =
∑

k

e−itk/h̄|ck|2.

Consequently, the survival amplitude can be expressed as the characteristic function of the
state probability p = {pk = |ck|2 : k ∈ Z} in the energy representation if we replace t by
−t/h̄. By inequality (7), we conclude that

|φ(t)|2 � I (p)

I (p) + 4 sin2
(

t
2h̄

) , ∀ t ∈ R.

Moreover, if we follow [3] and define the average lifetime of the state in the period [0, 2πh̄]
as

τ =
∫ 2πh̄

0
|φ(t)|2 dt,

then we readily have

τ � 2πh̄

√
I (p)

I (p) + 4

which shows that the average lifetime in a period is bounded by a simple functional of the
Fisher information.

In summary, we have established a Cramér–Rao-type inequality for vector functions of
integer-valued random variables. By use of this matrix inequality, we obtain an upper bound
for the characteristic functions of lattice distributions, which has some interesting physical
implications. In particular, it can be readily applied to estimate the survival probability and
average lifetime of quantum states associated with quantum harmonic oscillators.
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